PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) IV B.TECH I SEMESTER END REGULAR EXAMINATIONS, NOV-2022 POWER SYSTEM OPERATION AND CONTROL (EEE Branch)

Time: 3 hours

EE DIAIICII)

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	СО	KL
1.	a)	What are the components of a Production Cost of power?	[2M]	1	1
	b)	What are the advantages of operation of hydrothermal combinations?	[2M]	2	1
	c)	What is the concept of control area in load frequency control of power	[2M]	3	1
		system?			1
	d)	What is need for unit commitment in power system?	[2M]	4	2
	e)	What are the sources for reactive power?	[2M]	5	1

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL		
	UNIT-I						
2.		Determine the Condition for Optimal generation allocation of a power	[10M]	1	3		
		system with 'n' plants by neglecting the transmission losses.					
OR							
3.		A constant load of 400 MW is supplied by two 210-MW generators 1 and 2,	[10M]	1	3		
		for which the fuelcost characteristics are given as below:					
		$C_1 = 0.05 P_1 + 20 P_1^2 + 30.0 Rs./hr$					
		$C_2 = 0.06 P_2 + 15 P_2^2 + 40.0 Rs./hr$					
		The real-power generations of units P_1 and P_2 are inMW.					
		Determine: (i) the most economical load sharingbetween the generators.					
		(ii) The saving in Rs./day there by obtained compared to the equal load					
		sharing between two generators.					
UNIT-II							
4.		Derive the condition for optimality of short-term hydrothermal scheduling	[10M]	2	4		
		problem using Kirch-mayers Method.					
		OR					
5.	a)	Explain the advantages of operation of Hydrothermal System.	[5M]	2	2		
	1	Explain the factors on which economic operation of a combined	[5M]	2	2		
	b)	hydrothermal system depends?					
		UNIT-III					
6.	a)	Explain the necessity to maintaining a constant frequency in power system	[5M]	3	2		
		operation.					
	b)	Describe the schematic diagram of a speed governing system with the	[5M]	3	3		
		function of its components.					
OR							
7.	a)	Obtain the dynamic response of load frequency control of power system	[5M]	3	4		
		with integral control action.					
	b)	Distinguish between load frequency control and economic dispatch control.	[5M]	3	2		

R18

UNIT-IV								
8.	a)	Describe the constraints used in unit commitment problem.	[5M]	4	2			
	b)	Explain the cost function for unit commitment.	[5M]	4	2			
OR								
9.		Explain the Optimal unit commitment problem using Dynamic	[10M]	4	3			
		programming approach.						
UNIT-V								
10.	a)	Explain the need of reactive power control in power system.	[5M]	5	2			
	b)	What are the different types of compensating equipment for transmission	[5M]	5	1			
		systems?						
OR								
11.	a)	Explain the specifications of load compensator.	[5M]	5	2			
	b)	Explain need for FACTS controllers in transmission systems.	[5M]	5	2			
